
UNIQUE FACTORIZATION IN Z AND F [T ]

KEITH CONRAD

1. Introduction

We call an integer p > 1 prime when its only positive factors are 1 and p. Every integer
n > 1 has two obvious positive factors: 1 and itself. Primes are the numbers greater than
1 whose only positive factors are the obvious ones. The sequence of primes starts out as

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, . . .

Prime numbers are the building blocks of the positive integers under multiplication, as
codified in the following theorem.

Theorem 1.1 (Unique Factorization in Z). Every integer n > 1 can be written as a product
of primes. Moreover, the prime factorization of n is unique: if n = p1 · · · pr and n = q1 · · · qs
where the pi’s and qj’s are prime then r = s and after relabeling the factors we have pi = qi
for all i.

Theorem 1.1 is really two statements about each n > 1: (i) a prime factorization of n
exists and (ii) there is only one prime factorization for n up to the order of multiplication
of the prime factors. To prove Theorem 1.1, we will prove these two statements separately.

When we talk about a product of primes in Theorem 1.1, we allow repeated factors, e.g.,
45 is 3 · 3 · 5. Also we allow a “product” with a single term in it, so a prime number is a
product of primes using only itself in the product. If we didn’t allow this, then we’d have
to say every n > 1 is a prime or a product of primes. By allowing a product with a single
term, our language becomes simpler.

Polynomials can be factored, just like integers, and for historical reasons the name for
the building blocks of polynomials under multiplication is irreducibles instead of primes:
in F [T ], where F is a field, a nonconstant polynomial p(T ) is called irreducible if its only
factors are nonzero constants and nonzero constant multiples of itself. Every nonconstant
f(T ) in F [T ] is divisible by nonzero constants and nonzero constant multiples of f(T ), so
the irreducible polynomials are the nonconstant polynomials whose only factors are the
obvious ones. Unique factorization in F [T ] looks similar to unique factorization in Z:

Theorem 1.2 (Unique Factorization in F [T ]). Let F be a field. Every nonconstant f(T ) in
F [T ] can be written as a product of irreducibles. Moreover, the irreducible factorization of
f(T ) is unique: if f(T ) = p1(T ) · · · pr(T ) and f(T ) = q1(T ) · · · qs(T ) where the pi(T )’s and
qj(T )’s are irreducible then r = s and after relabeling the factors we have pi(T ) = ciqi(T )
for all i, where the ci’s are nonzero constants.

Like Theorem 1.1, there are two statements in Theorem 1.2: for every nonconstant
polynomial in F [T ], (i) an irreducible factorization exists and (ii) it is unique up to the order
of multiplication and up to scaling by nonzero constants. Also, we adopt the convention
that an irreducible polynomial is a one-term product of irreducibles.
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The ambiguity in irreducible factorizations is broader than just changing the order of
multiplication: we have to allow scaling of irreducible factors by nonzero constants (which
doesn’t change their irreducibility). To illustrate this, consider in R[T ] the following irre-
ducible factorizations of T 2 − 1:

T 2 − 1 = (T + 1)(T − 1) = (3T + 3)

(
1

3
T − 1

3

)
=

(
4

5
T − 4

5

)(
5

4
T +

5

4

)
.

The second irreducible factorization scales the two factors T + 1 and T − 1 by 3 and 1/3,
while the third irreducible factorization scales these factors by 5/4 and 4/5 and changes the
order of multiplication.

The proofs of Theorems 1.1 and 1.2 will be similar: induct on n and induct on deg f .

2. Proof of Theorem 1.1

Theorem 2.1. Every n > 1 has a prime factorization: we can write n = p1 · · · pr, where
the pi are prime numbers.

Proof. We will use induction, but more precisely strong induction: assuming every integer
between 1 and n has a prime factorization we will derive that n has a prime factorization.

Our base case is n = 2. This is a prime, so it is a product of primes by our convention
that a prime is a product of primes with one term.

Now assume n > 2 and (here comes the strong inductive hypothesis) for all m with
1 < m < n that m is a product of primes. To show n is a product of primes, we take cases
depending on whether m is prime or not.

Case 1: The number n is prime.
In this case, n is a product of primes with just one term. (This is the easy case.)
Case 2: The number n is not prime.
Since n > 1 and n is not prime, there is some nontrivial factorization n = ab where

1 < a < n and 1 < b < n. By our strong inductive hypothesis, both a and b are products of
primes. Since n is the product of a and b, and both a and b are products of primes, n is a
product of primes by stringing together the prime factorizations of a and b. More explicitly,
writing a = p1 · · · pk and b = p′1 · · · p′` where pi and p′j are all prime, we have

n = ab = p1 · · · pkp′1 · · · p′`,
which is a product of primes. �

The key to proving uniqueness of prime factorization is the following property of primes.

Lemma 2.2. If p is a prime number and p | ab for some integers a and b, then p | a or
p | b.

Proof. We will assume p | ab and the conclusion is false: p does not divide a or p does not
divide b. If p does not divide a then (p, a) = 1 because p is prime. A basic consequence of
Bezout’s identity tells us that from p | ab and (p, a) = 1 we have p | b.

If p does not divide b, then by switching the roles of a and b (which is okay since ab = ba)
we can conclude that p | a. �

A generalization of Lemma 2.2 is that for each finite list of integers a1, . . . , ak, if p |
a1 · · · ak then p | ai for some i. This is trivial for k = 1, and for k ≥ 2 it can be proved by
induction on k. Lemma 2.2 is the base case k = 2, and if for k ≥ 3 and the generalization
is proved for a prime p dividing products of k integers, then we will prove it for p dividing
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products of k + 1 integers: if p | a1 · · · ak+1 then rewrite this as p | (a1 · · · ak)ak+1. Since
(a1 · · · ak)ak+1 is a product of two integers a1 · · · ak and ak+1, by Lemma 2.2 either p |
a1 · · · ak or p | ak+1. If p | a1 · · · ak then p | ai for some i from 1 to k by the inductive
hypothesis, and including the option p | ak+1 with these tells us that p | ai for some i from
1 to k + 1, which completes the inductive proof.

Now we can prove prime factorization is unique.

Theorem 2.3. If p1 · · · pr = q1 · · · qs where the pi’s and qj’s are prime, then r = s and
after relabeling the factors we have pi = qi for all i.

Proof. The key mathematical step is this: when p1 · · · pr = q1 · · · qs, p1 must equal some qj .
This is because

p1 · · · pr = q1 · · · qs =⇒ p1 | q1 · · · qs =⇒ p1 | qj for some j,

where the second implication is the generalization of Lemma 2.2 that we mentioned above.
That uses primality of p1. Since qj is prime and p1 | qj , we must have p1 = qj (a prime has
no factor greater than 1 other than itself).

To prove the theorem, we will induct on the total number of prime factors in the two
equal prime factorizations, which is r + s.1 We allow repeated primes.

The base case is r+ s = 2 (why not r+ s = 1?) when the equal prime factorization turns
into p1 = q1. Here the conclusion of the theorem is obvious (there is no relabeling needed,
since each side has one factor).

Suppose next that r + s > 2 and the theorem is true for all pairs of equal prime fac-
torizations for which the total number of primes being used is less than r + s. If we have
p1 · · · pr = q1 · · · qs then r > 1 and s > 1: if r = 1 or s = 1 then one side is a prime number
and therefore the other side has to be a prime number, so r = s = 1, but r + s > 2.

From p1 · · · pr = q1 · · · qs we explained at the start of the proof that p1 must be some
qj . By relabeling the factors on the right, which is okay since the order of multiplication
doesn’t matter, we can assume p1 = q1. Then our equal prime factorization becomes

p1p2 · · · pr = p1q2 · · · qs.
Canceling the common factor p1 on both sides, we get

(2.1) p2 · · · pr = q2 · · · qs.
In this equation of equal prime factorizations, the total number of primes appearing on both
sides is (r − 1) + (s− 1) = r + s− 2, which is less than r + s. By our inductive hypothesis
we conclude r− 1 = s− 1 (there are r− 1 primes on the left and s− 1 primes on the right),
so r = s, and after relabeling the primes in (2.1) we have pi = qi for all i ≥ 2. Combining
this with p1 = q1 we have pi = qi for all i. �

Example 2.4. For a prime p and integer m ≥ 1, every factor of pm is ±pk where 0 ≤ k ≤ m.
Indeed, if d | pm then each prime factor of d is a factor of pm, and by unique factorization
the only prime factor of pm is p. Therefore the expression of d as a product of primes up
to a sign (if d 6= ±1) must be a product of p’s, so d = ±pk. Since d ≤ pm we get pk ≤ pm,
so 0 ≤ k ≤ m.

Perhaps you think the uniqueness of prime factorization is obvious, since it is consistent
with all of your prior experience. Is there really a need to give a proof at all? Here are
three answers to that question.

1Another possibility is to induct on max(r, s) with very similar steps to the proof we give.
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(1) There are number systems where prime factorization exists but is not unique.
(2) Even if uniqueness of prime factorization holds for small numbers, how do we know

uniqueness never breaks down for big numbers without a proof? For instance, n =
11501689 can be written as 2747 ·4187 and 3239 ·3551. Does that violate uniqueness
of prime factorization? No, because those factorizations don’t use primes: 2747 =
41 · 67 and 4187 = 53 · 79, while 3239 = 41 · 79 and 3551 = 53 · 67. The prime
factorization of n is really 41 · 53 · 67 · 79.

(3) Historically, nobody saw a need to prove Theorem 1.1 until Gauss in 1801 (Article
16 in his book Disquisitiones Arithmeticae). Earlier, Legendre and Euler stated the
existence of prime factorization in their work, but gave no proof of its uniqueness
even if they implicitly used it. Going back further to the ancient Greeks, in Euclid’s
Elements there is proof that each n > 1 has a prime factor (Prop. 31 in Book VII),
but no proof that n has a prime factorization or that it is unique. There is a proof
of Example 2.4 when d > 0 (Prop. 13 in Book IX).

We turn next to unique factorization of polynomials, and we will see that almost every-
thing we have done for integers will carry over to the polynomial setting except that we
have to keep track of scalar multiples of irreducible factors.

3. Proof of Theorem 1.2

To prove F [T ] has unique factorization, we will first prove irreducible factorizations exist
for all nonconstant polynomials and then we will show they are unique (up to the order of
multiplication and scaling by nonzero constants).2 This is similar to the strategy in Z.

Theorem 3.1. Every nonconstant polynomial in F [T ] has an irreducible factorization.

Proof. We will argue by strong induction on the degree of polynomials.
Our base case is degree 1. Every polynomial in F [T ] of degree 1 is irreducible, so they

are each a product of irreducibles using just one term.
Now assume d > 1 and every nonconstant polynomial in F [T ] with degree less than d

has an irreducible factorization. Pick a polynomial f(T ) ∈ F [T ] of degree d. We want to
show f(T ) has an irreducible factorization.

Case 1: The polynomial f(T ) is irreducible.
Here f(T ) is a one-term product of irreducibles.
Case 2: The polynomial f(T ) is not irreducible.
Since f(T ) is nonconstant and not irreducible, we can write f(T ) = g(T )h(T ) where

0 < deg g < deg f and 0 < deg h < deg f . By the strong inductive hypothesis, g(T ) and
h(T ) have irreducible factorizations: g(T ) = p1(T ) · · · pk(T ) and h(T ) = p̃1(T ) · · · p̃`(T )
with irreducible pi(T ) and p̃j(T ) in F [T ]. Putting these together gives us an irreducible
factorization of f(T ):

f(T ) = g(T )h(T ) = p1(T ) · · · pk(T )p̃1(T ) · · · p̃`(T ),

which expresses f(T ) as a product of irreducibles in F [T ]. �

To prove irreducible factorization in F [T ] is unique, we use an analogue of Lemma 2.2.

Lemma 3.2. If p(T ) is irreducible in F [T ] and p(T ) | a(T )b(T ) in F [T ], then p(T ) | a(T )
or p(T ) | b(T ).

2The page https://mathoverflow.net/questions/15137 discusses the history of unique factorization in
polynomials.

https://mathoverflow.net/questions/15137
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Proof. This is proved just like Lemma 2.2. If p(T ) does not divide a(T ) then (p(T ), a(T )) =
1 in F [T ] because p(T ) is irreducible. From Bezout’s identity in F [T ], the conditions
p(T ) | a(T )b(T ) and (p(T ), a(T )) = 1 imply p(T ) | b(T ). Similarly, if p(T ) does not divide
b(T ) then p(T ) | a(T ) by swapping the roles of a(T ) and b(T ). �

Lemma 3.2 generalizes by induction on the number of terms to say that if p(T ) is irre-
ducible in F [T ] and p(T ) | a1(T ) · · · ak(T ) then p(T ) | ai(T ) for some i. The proof is just
like its analogue in Z that we discussed earlier. With this generalization we can prove the
uniqueness of irreducible factorizations in F [T ].

Theorem 3.3. If p1(T ) · · · pr(T ) = q1(T ) · · · qs(T ) where the pi(T )’s and qj(T )’s are irre-
ducible, then r = s and after relabeling the factors we have pi(T ) = ciqi(T ) for all i where
the ci are nonzero in F .

Proof. As in the proof Theorem 2.3, the key step is that if p1(T ) · · · pr(T ) = q1(T ) · · · qs(T )
then p1(T ) = cjqj(T ) for some j and nonzero cj in F . This follows from

p1(T ) · · · pr(T ) = q1(T ) · · · qs(T ) =⇒ p1(T ) | q1(T ) · · · qs(T ) =⇒ p1(T ) | qj(T ) for some j.

By relabeling, we can take j = 1, i.e., p1(T ) | q1(T ). That implies p1(T ) is a constant
multiple of q1(T ) since the only nonconstant factors of an irreducible polynomial in F [T ]
are constant multiples of itself. (This is different from prime numbers, where the only
positive factor is the number itself!) Therefore p1(T ) = c1q1(T ) for some constant c1.

Our theorem will be proved by induction on the total number of irreducible factors in
the equal irreducible factorizations, which is r + s. The base case is r + s = 2, when the
equation is p1(T ) = q1(T ), and this case is obvious.

Now suppose r + s > 2 and the theorem is true for all pairs of equal irreducible factor-
izations for which the total number of irreducibles is less than r + s. If p1(T ) · · · pr(T ) =
q1(T ) · · · qs(T ) then r > 1 and s > 1 by the same proof as in the integer case. By relabeling
the factors we have assume p1(T ) = c1q1(T ), so

p1(T )p2(T ) · · · pr(T ) =
1

c1
p1(T )q2(T ) · · · qs(T ).

Canceling p1(T ) from both sides,

(3.1) p2(T ) · · · pr(T ) =
1

c1
q2(T ) · · · qs(T ).

We need to be careful here: the factor 1/c1 on the right is not irreducible. It’s just a
constant. We can attach it to q2(T ): the polynomial (1/c1)q2(T ) is irreducible. Therefore
the left side of (3.1) has r − 1 irreducible factors and the right side has s − 1 irreducible
factors (namely (1/c1)q2(T ), q3(T ), . . . , qs(T )). From (r − 1) + (s− 1) = r + s− 2 < r + s,
by the inductive hypothesis r− 1 = s− 1, so r = s. Also by the inductive hypothesis, after
relabeling the factors we have p2(T ) = c(1/c1)q2(T ) and pi(T ) = ciqi(T ) for all i ≥ 3, where
c, c3, . . . are all nonzero constants. Set c2 = c/c1, and then along with p1(T ) = c1q1(T ) we
have shown each pi(T ) is a constant multiple of qi(T ) and our proof is complete. �

Other than some extra bookkeeping to account for constant multiples, the proof of unique
factorization in F [T ] is basically the same as the proof of unique factorization in Z.

Example 3.4. If p(T ) is irreducible in F [T ] and m ≥ 1 then every factor of p(T )m in F [T ]
is cp(T )k where c is nonzero in F and 0 ≤ k ≤ m. The proof is along the same lines as in
Example 2.4. Details are left to the reader.
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